Microbial chemotaxis plays a key role in a diversity of biological and ecological processes. Although microfluidics-based assays have been applied to investigate bacterial chemotaxis, retrieving chemotactic cells off-chip based on their dynamic chemotactic responses remains limited. Here, we present a simple three-dimensional microfluidic platform capable of programmable delivery of solutions, maintaining static, stable gradients for over 20 hours, followed by active sorting and retrieval of bacteria based on their chemotactic phenotypes.
View Article and Find Full Text PDFAlthough neuronal network models hold great potential for advancing neuroscience research, with the capacity to provide fundamental insights into mechanisms underlying neuronal functions, the dynamics of cell communication within such networks remain poorly understood. Here, we develop a customizable, polymer modified three-dimensional gold microelectrode array with sufficient stability for high signal-to-noise, long-term, neuronal recording of cultured networks. By using directed spatial and temporal patterns of electrical stimulation of cells to explore synaptic-based communication, we monitored cell network dynamics over 3 weeks, quantifying communication capability using correlation heatmaps and mutual information networks.
View Article and Find Full Text PDFAmmonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NHCl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2022
The determination of molecular diffusion across biomaterial interfaces, including those involving hydrogels and tissues remains important, underpinning the understanding of a broad range of processes including, for example, drug delivery. Current techniques using Raman spectroscopy have previously been established as a method to quantify diffusion coefficients, although when using spontaneous Raman spectroscopy, the signal can be weak and dominated by interferences such as background fluorescence (including biological autofluoresence). To overcome these issues, we demonstrate the use of the stimulated Raman scattering technique to obtain measurements in soft tissue samples that have good signal-to-noise ratios and are largely free from fluorescence interference.
View Article and Find Full Text PDFIt is well known that extracellular matrix stiffness can affect cell fate and change dynamically during many biological processes. Existing experimental means for in situ matrix stiffness modulation often alters its structure, which could induce additional undesirable effects on cells. Inspired by the phenomenon of depth sensing by cells, we introduce here core-shell microfibers with a thin collagen core for cell growth and an alginate shell that can be dynamically stiffened to deliver mechanical stimuli.
View Article and Find Full Text PDF