The Cryogenic Underground Observatory for Rare Events (CUORE) is a detector array comprised by 988 5 cm×5 cm×5 cm TeO_{2} crystals held below 20 mK, primarily searching for neutrinoless double-beta decay in ^{130}Te. Unprecedented in size among cryogenic calorimetric experiments, CUORE provides a promising setting for the study of exotic throughgoing particles. Using the first tonne year of CUORE's exposure, we perform a search for hypothesized fractionally charged particles (FCPs), which are well-motivated by various standard model extensions and would have suppressed interactions with matter.
View Article and Find Full Text PDFIntroduction: The plantar plate, also called the plantar ligament, is a fibrocartilaginous structure found in the metatarsophalangeal (MTP) and interphalangeal (IP) joints. Our study aimed to evaluate the role of magnetic resonance imaging (MRI) performed with the patient in the standard position or with joint hyperextension (the "stress test", ST) in the study of plantar plate (PP) disease that involves metatarsophalangeal joints.
Materials And Methods: All patients underwent forefoot MRI (Atroscan C, Esaote, Genoa, Italy), operating at 0.
Purpose: We investigated sex-related brain metabolic differences in Amyotrophic Lateral Sclerosis (ALS) and healthy controls (HC).
Methods: We collected two equal-sized groups of male (m-ALS) and female ALS (f-ALS) patients (n = 130 each), who underwent 2-[F]FDG-PET at diagnosis, matched for site of onset, cognitive status and King's stage. We included 168 age-matched healthy controls, half female (f-HC) and half male (m-HC).
The differentiation/maturation trajectories of different blood cell types stemming from a CD34 common ancestor takes place in different biologically relevant multidimensional spaces. Here, we generated microRNA and cytokine profiles from highly purified populations of hematopoietic progenitors/precursors derived from cord blood hematopoietic stem/progenitor cells. MicroRNA and cytokine landscapes were then analyzed to find their mutual relationships under the hypothesis that the highly variable miRNome corresponds to the 'force field' driving the goal of a stable phenotype (here corresponding to the cytokine abundance pattern) typical of each cell kind.
View Article and Find Full Text PDF