We reveal and analyze an efficient magnetic dynamo action due to precession-driven hydrodynamic turbulence in the local model of a precessional flow, focusing on the kinematic stage of this dynamo. The growth rate of the magnetic field monotonically increases with the Poincaré number Po, characterizing precession strength, and the magnetic Prandtl number Pm, equal to the ratio of viscosity to resistivity, for the considered ranges of these parameters. The critical Po_{c} for the dynamo onset decreases with increasing Pm.
View Article and Find Full Text PDFThe unique behavior of colloids at liquid interfaces provides exciting opportunities for engineering the assembly of colloidal particles into functional materials. The deformable nature of fluid-fluid interfaces means that we can use the interfacial curvature, in addition to particle properties, to direct self-assembly. To this end, we use a finite element method (Surface Evolver) to study the self-assembly of rod-shaped particles adsorbed at a simple curved fluid-fluid interface formed by a sessile liquid drop with cylindrical geometry.
View Article and Find Full Text PDFCircadian clocks are timing devices that rhythmically adjust organism's behavior, physiology, and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks rely on several interlocked transcription-translation feedback loops, where protein stability is the key part of the delay between transcription and the appearance of the mature proteins within the feedback loops. In bilaterian animals, including mammals and insects, the circadian clock depends on a homologous set of proteins.
View Article and Find Full Text PDFCircadian clocks are self-sustained molecular oscillators controlling daily changes of behavioral activity and physiology. For functional reliability and precision, the frequency of these molecular oscillations must be stable at different environmental temperatures, known as "temperature compensation." Despite being an intrinsic property of all circadian clocks, this phenomenon is not well understood at the molecular level.
View Article and Find Full Text PDFThe aim of the present study was to establish a modular platform of poly-L-lysine-heparin (PLL-Hep) polyelectrolyte multilayer (PEM) coatings on titanium surfaces for dual growth factor delivery of recombinant human bone morphogenic protein 2 (rhBMP2) and recombinant human vascular endothelial growth factor 165 (rhVEGF165) in clinically relevant quantities. Release characteristics for both growth factors differed significantly depending on film architecture. rhBMP2 induced activation of alkaline phosphatase in C2C12 cells and proliferation of human mesenchymal stem cells (hMSCs).
View Article and Find Full Text PDF