Organic-inorganic hybrid materials have recently found a vast variety of applications in the fields of energy storage and microelectronics due to their outstanding electric and dielectric characteristics, including high dielectric constant, low conductivity, and low dielectric loss. However, despite the promising properties of these materials, there remains a need to explore novel compounds with improved performance for practical applications. In this research paper, the focus is on addressing this scientific challenge by synthesizing and characterizing the new-centrosymmetric (CHN)[CdBr] crystal.
View Article and Find Full Text PDFDue to remarkable dielectric features, such as a large dielectric constant, strong electrical conductivity, high capacitance, and low dielectric loss, hybrid materials have lately seen a huge number of applications in the field of optoelectronics. These are critical characteristics that qualify the performance of optoelectronic devices, particularly field-effect transistor components (FETs). Here, the hybrid compound 2-amino-5-picoline tetrachloroferrate(iii) (2A5PFeCl) was synthesised by using the slow evaporation solution growth method at room temperature.
View Article and Find Full Text PDF