Publications by authors named "A Ghodousi"

Background: The transmission of Salmonella spp. to human through the consumption of contaminated food products of animal origin, mainly poultry is a significant global public health concern. The emerging multidrug resistant (MDR) clones of non-typhoidal Salmonella (NTS) serovars, have spread rapidly worldwide both in humans and in the food chain.

View Article and Find Full Text PDF

Globally, drug-resistant tuberculosis (DR-TB) is responsible for 13% of mortality attributable to antimicrobial resistance. In Ethiopia, extrapulmonary tuberculosis (EPTB) is a significant public health challenge, and drug resistance (DR) in EPTB is often overlooked. In a cross-sectional study conducted between August 2022 and October 2023, we aimed to explore the magnitude of phenotypic drug resistance and identify genetic mutations linked to resistance using 189 Mycobacterium tuberculosis (MTB) isolates cultured from extrapulmonary clinical specimens.

View Article and Find Full Text PDF

Objectives: This study aimed to examine the efficacy of whole genome sequencing (WGS) in accurately predicting susceptibility profiles, potentially eliminating the need for conventional phenotypic drug susceptibility testing (pDST) for first-line antituberculosis drugs in routine tuberculosis diagnosis.

Methods: Over the period of 2017 to 2020, 1114 Mycobacterium tuberculosis complex isolates were collected with drug susceptibility testing conducted using the MGIT960 system and WGS performed for predicting drug resistance profiles. In addition, we implemented a new algorithm with an updated WGS workflow, omitting pan-susceptible strains from pDST.

View Article and Find Full Text PDF

Lack of appropriate early diagnostic tools for drug-resistant tuberculosis (DR-TB) and their incomplete drug susceptibility testing (DST) profiling is concerning for TB disease control. Existing methods, such as phenotypic DST (pDST), are time-consuming, while Xpert MTB/RIF (Xpert) and line probe assay (LPA) are limited to detecting resistance to few drugs. Targeted next-generation sequencing (tNGS) has been recently approved by WHO as an alternative approach for rapid and comprehensive DST.

View Article and Find Full Text PDF