Searching for space-time variations of the constants of Nature is a promising way to search for new physics beyond general relativity and the standard model motivated by unification theories and models of dark matter and dark energy. We propose a new way to search for a variation of the fine-structure constant using measurements of late-type evolved giant stars from the S star cluster orbiting the supermassive black hole in our Galactic Center. A measurement of the difference between distinct absorption lines (with different sensitivity to the fine structure constant) from a star leads to a direct estimate of a variation of the fine structure constant between the star's location and Earth.
View Article and Find Full Text PDFThe central 0.1 parsecs of the Milky Way host a supermassive black hole identified with the position of the radio and infrared source Sagittarius A* (refs. ), a cluster of young, massive stars (the S stars) and various gaseous features.
View Article and Find Full Text PDFThe general theory of relativity predicts that a star passing close to a supermassive black hole should exhibit a relativistic redshift. In this study, we used observations of the Galactic Center star S0-2 to test this prediction. We combined existing spectroscopic and astrometric measurements from 1995-2017, which cover S0-2's 16-year orbit, with measurements from March to September 2018, which cover three events during S0-2's closest approach to the black hole.
View Article and Find Full Text PDFSagittarius A* (Sgr A*) is the variable radio, near-infrared (NIR), and X-ray source associated with accretion onto the Galactic center black hole. We present an analysis of the most comprehensive NIR variability data set of Sgr A* to date: eight 24 hr epochs of continuous monitoring of Sgr A* at 4.5 m with the IRAC instrument on the , 93 epochs of 2.
View Article and Find Full Text PDF