Background: The COVID-19 pandemic accelerated telehealth adoption across disease cohorts of patients. For many patients, routine medical care was no longer an option, and others chose not to visit medical offices in order to minimize COVID-19 exposure. In this study, we take a comprehensive multidisease approach in studying the impact of the COVID-19 pandemic on health care usage and the adoption of telemedicine through the first 12 months of the COVID-19 pandemic.
View Article and Find Full Text PDFThe development, fabrication, and embedment of fiber-optic evanescent wave sensors (FOEWSs) to monitor the state of charge (SOC) and the state of health (SOH) of lithium-ion batteries (LIBs) are presented. Etching of FOEWSs is performed using a solution of 40 wt % ammonium fluoride (NHF) and 49 wt % hydrofluoric acid (HF) (6:1), which is found to be superior to an etching solution containing just 49 wt % HF. FOEWSs were characterized using glycerol and found to have the highest sensitivity in a lithium-ion battery when they lose 92% of their transmittance in the presence of glycerol on their sensing region.
View Article and Find Full Text PDFOn page 6421, Z. Chen and co-workers describe an electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human-hair array for solid-state zinc-air batteries. Grown directly on a stainless-steel mesh, the hair-like array can effectively catalyze molecular oxygen to water.
View Article and Find Full Text PDFOptical characterization of graphite anodes in lithium ion batteries (LIB) is presented here for potential use in estimating their state of charge (SOC). The characterization is based on reflectance spectroscopy of the anode of commercial LIB cells and in situ optical measurements using an embedded optical fiber sensor. The optical characterization of the anode using wavelengths ranging from 500 to 900 nm supports the dominance of graphite over the solid electrolyte interface in governing the anode's reflectance properties.
View Article and Find Full Text PDFAn electrically rechargeable, nanoarchitectured air electrode that morphologically emulates a human hair array is demonstrated in a zinc-air battery. The hair-like array of mesoporous cobalt oxide nanopetals in nitrogen-doped carbon nanotubes is grown directly on a stainless-steel mesh. This electrode produces both flexibility and improved battery performance, and thus fully manifests the advantages of flexible rechargeable zinc-air batteries in practical applications.
View Article and Find Full Text PDF