Publications by authors named "A Gerasch"

Motivation: Gene set analysis has revolutionized the interpretation of high-throughput transcriptomic data. Nowadays, with comprehensive studies that measure multiple -omics from the same sample, powerful tools for the integrative analysis of multi-omics datasets are required.

Results: Here, we present GeneTrail2, a web service allowing the integrated analysis of transcriptomic, miRNomic, genomic and proteomic datasets.

View Article and Find Full Text PDF

Cancer is a large class of diseases that are characterized by a common set of features, known as the Hallmarks of cancer. One of these hallmarks is the acquisition of genome instability and mutations. This, combined with high proliferation rates and failure of repair mechanisms, leads to clonal evolution as well as a high genotypic and phenotypic diversity within the tumor.

View Article and Find Full Text PDF

Interactive visual analysis of biological high-throughput data in the context of the underlying networks is an essential task in modern biomedicine with applications ranging from metabolic engineering to personalized medicine. The complexity and heterogeneity of data sets require flexible software architectures for data analysis. Concise and easily readable graphical representation of data and interactive navigation of large data sets are essential in this context.

View Article and Find Full Text PDF

Unlabelled: The deregulation of biochemical pathways plays a central role in many diseases like cancer or Parkinsons's disease. In silico tools for calculating these deregulated pathways may help to gain new insights into pathogenic mechanisms and may open novel avenues for therapy stratification in the sense of personalized medicine. Here, we present NetworkTrail, a web service for the detection of deregulated pathways and subgraphs in biological networks.

View Article and Find Full Text PDF

Background: Expression profiling provides new insights into regulatory and metabolic processes and in particular into pathogenic mechanisms associated with diseases. Besides genes, non-coding transcripts as microRNAs (miRNAs) gained increasing relevance in the last decade. To understand the regulatory processes of miRNAs on genes, integrative computer-aided approaches are essential, especially in the light of complex human diseases as cancer.

View Article and Find Full Text PDF