Publications by authors named "A Gedanken"

Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10-20 nm in diameter and 300-900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties.

View Article and Find Full Text PDF

Under alkaline treatment, zirconyl chloride (ZrOCl.8HO) became a zirconia gel and formed a stable complex with beta-cyclodextrin (βCD). This complex was highly active in reactive oxygen species (ROS) formation via HO decomposition.

View Article and Find Full Text PDF

Packaging bags made of polyethylene (PE) were sonochemically coated with edible antibacterial nanoparticles of chitosan (CS). In this work, the nanoparticles (NPs) were deposited on the surface of PE packaging bags by applying sonication waves on an acetic solution of chitosan. The characterization of CS NPs and PE bags was conducted by physicochemical techniques.

View Article and Find Full Text PDF

Intracellular monitoring of pH and polarity is crucial for understanding cellular processes and functions. This study employed pH- and polarity-sensitive nanomaterials such as carbon dots (CDs) for the intracellular sensing of pH, polarity, and viscosity using integrated time-resolved fluorescence anisotropy (FA) imaging (TR-FAIM) and fluorescence lifetime (FLT) imaging microscopy (FLIM), thereby enabling comprehensive characterization. The functional groups on the surface of CDs exhibit sensitivity to changes in the microenvironment, leading to variations in fluorescence intensity (FI) and FLT according to pH and polarity.

View Article and Find Full Text PDF