The potential mining of deep-sea polymetallic nodules has been gaining increasing attention due to their enrichment in metals essential for a low-carbon future. To date, there have been few scientific studies concerning the geochemical consequences of dewatered mining waste discharge into the pelagic water column, which can inform best practices in future mining operations. Here, we report the results of laboratory incubation experiments that simulate mining discharge into anoxic waters such as those that overlie potential mining sites in the North Pacific Ocean.
View Article and Find Full Text PDFOptimal design of a silicon nitride waveguide structure composed of resonant nanoantennas for efficient light coupling with interlayer exciton emitters in a MoSe2-WSe2 heterostructure is proposed. Numerical simulations demonstrate up to eight times coupling efficiency improvement and twelve times Purcell effect enhancement in comparison with a conventional strip waveguide. Achieved results can be beneficial for development of on-chip non-classical light sources.
View Article and Find Full Text PDFAt marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential.
View Article and Find Full Text PDFMicrobe-mineral interactions can produce unique composite materials, which can preserve biosignatures. Geological evidence suggests that iron sulfide (Fe-S) minerals are abundant in the subsurface of Mars. On Earth, the formation of Fe-S minerals is driven by sulfate-reducing microorganisms (SRM) that produce reactive sulfide.
View Article and Find Full Text PDFInteractions among microorganisms and their mineralogical substrates govern the structure, function and emergent properties of microbial communities. These interactions are predicated on spatial relationships, which dictate metabolite exchange and access to key substrates. To quantitatively assess links between spatial relationships and metabolic activity, this study presents a novel approach to map all organisms, the metabolically active subset and associated mineral grains, all while maintaining spatial integrity of an environmental microbiome.
View Article and Find Full Text PDF