Publications by authors named "A Gansen"

Nucleosomes play a dual role in compacting the genome and regulating the access to DNA. To unravel the underlying mechanism, we study fluorescently labeled mononucleosomes by multi-parameter FRET measurements and characterize their structural and dynamic heterogeneity upon NaCl-induced destabilization. Species-selective fluorescence lifetime analysis and dynamic photon distribution analysis reveal intermediates during nucleosome opening and lead to a coherent structural and kinetic model.

View Article and Find Full Text PDF

Background: With the passing of Jörg Langowski 6 May 2017 in a sailplane accident, the scientific community was deprived of a strident and effective voice for DNA and chromatin molecular and computational biophysics, for open access publishing and for the creation of effective scientific research networks.

Methods: Here, after reviewing some of Jörg's key research contributions and ideas, we offer through the personal remembrance of his closest collaborators, a deep analysis of the major results of his research and the future directions they have engendered.

Conclusions: The legacy of Jörg Langowski has been to propel a way of viewing biological function that considers living systems as dynamic and in three dimensions.

View Article and Find Full Text PDF

Human mitochondrial transcription factor A (TFAM) distorts DNA into a U-turn, as shown by crystallographic studies. The relevance of this U-turn is associated with transcription initiation at the mitochondrial light strand promoter (LSP). However, it has not been yet discerned whether a tight U-turn or an alternative conformation, such as a V-shape, is formed in solution.

View Article and Find Full Text PDF

Nucleosomes are important for chromatin compaction and gene regulation; their integrity depends crucially on the structural properties of the histone tails. Recent all-atom molecular dynamics simulations revealed that removal of the N-terminal tails of histone H3, known to destabilize nucleosomes, causes a rearrangement of two arginines of histone H2A, namely R81 and R88 by altering the electrostatic environment of the H2A α3 domain. Whether this rearrangement is the cause or the effect of decreased stability, is unclear.

View Article and Find Full Text PDF

The standard Yee algorithm is widely used in computational electromagnetics because of its simplicity and divergence free nature. A generalization of the classical Yee scheme to 3D unstructured meshes is adopted, based on the use of a Delaunay primal mesh and its high quality Voronoi dual. This allows the problem of accuracy losses, which are normally associated with the use of the standard Yee scheme and a staircased representation of curved material interfaces, to be circumvented.

View Article and Find Full Text PDF