In biochip development two issues are critical: stable and specific immobilization of the ligand and achievement of high signal-to-background ratio. In this work we have addressed these issues for the development of biochips, produced by sputtering multilayers of thin metal films, metal oxides, and metal nitrides (tens to hundreds of nanometers thick) onto glass wafers. Optimized surfaces have shown good results in genomic and proteomic experiments with biochips based on surface-enhanced fluorescence and absorption techniques.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
December 2001
Nanoclusters and nanofilms have the potential to amplify fluorescence and thus to enhance the signal of labeled biomolecules on biochip surfaces. Fluorescent molecules are bound at a certain distance to a resonant layer of a metal or a semiconductor or both, resulting in enhanced absorption and emission of the fluorophore within the electromagnetic near-field. This property makes the system highly useful for interaction studies, including those of DNA and proteins.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
November 2003
The combination of phage display antibody arrays with a novel nanotransducer technique based on resonant nanoparticles in a nanosandwiched film enables the sensitive parallel screening of proteins. Using the resonance of nanoparticles with their induced mirror dipoles in a thin-film structure, limitations of fluorophores, such as unspecific background and nonvisibility to the eye, can be overcome, thereby leading to an optical signal significantly more sensitive than that of standard colloid techniques. The signal can be both directly observed as a color change of a microdot at the sensor surface and tuned throughout the visible range of the spectrum.
View Article and Find Full Text PDF