Background: Traumatic Brain Injury (TBI) represents one of the main causes of brain damage in young people and the elderly population with a very high rate of psycho-physical disability and death. TBI is characterized by extensive cell death, tissue damage and neuro-inflammation with a symptomatology that varies depending on the severity of the trauma from memory loss to a state of irreversible coma and death. Recently, preclinical studies on mouse models have demonstrated that the post-traumatic adult Neural Stem/Progenitor cells response could represent an excellent model to shed light on the neuro-reparative role of adult neurogenesis following damage.
View Article and Find Full Text PDFgene loss-of-function mutation leads to Primary Ciliary Dyskinesia (PCD), a disease caused by motile cilia dysfunction. Previously, we demonstrated that knockout of the gene in mice replicates several features of PCD, such as hydrocephalus, defects in left-right body symmetry, and male infertility, with a complete absence of sperm in the reproductive tract. The majority of knockout animals die before sexual maturation due to severe hydrocephalus and failure to thrive, which precludes fertility studies.
View Article and Find Full Text PDFAcquisition of detailed anatomical and molecular knowledge from intact biological samples while preserving their native three-dimensional structure is still a challenging issue for imaging studies aiming to unravel a system's functions. Three-dimensional micro-CT X-ray imaging with a high spatial resolution in minimally perturbed naive non-transparent samples has recently gained increased popularity and broad application in biomedical research. Here, we describe a novel X-ray-based methodology for analysis of () reporter-driven gene expression in an intact murine brain ex vivo by micro-CT.
View Article and Find Full Text PDFThe International Mouse Phenotyping Consortium reports the generation of new mouse mutant strains for over 5,000 genes, including 2,850 novel null, 2,987 novel conditional- ready, and 4,433 novel reporter alleles.
View Article and Find Full Text PDFPrimary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting normal structure and function of motile cilia, phenotypically manifested as chronic respiratory infections, laterality defects and infertility. Autosomal recessive mutations in genes encoding for different components of the ciliary axoneme have been associated with PCD in humans and in model organisms. The gene encodes for a coiled-coil axonemal protein that ensures correct attachment of outer dynein arm (ODA) complexes to microtubules.
View Article and Find Full Text PDF