Studies on the influence of hydrodynamic conditions on anthropogenic microfiber (MF) and microplastic (MP) distributions in freshwater environments are sparse. In this study, we evaluated the influence of urbanisation gradient on the spatial variability of MFs and MPs. Temporal variability was also assessed by comparing the concentrations and fluxes of MFs and MPs under low flow conditions with those during the January-February 2018 flood event.
View Article and Find Full Text PDFEur Heart J Cardiovasc Imaging
September 2022
Aims: The left atrium (LA) has a pivotal role in cardiac performance and LA deformation is a well-known prognostic predictor in several clinical conditions including heart failure with reduced ejection fraction. The aim of this study is to investigate the effect of cardiac resynchronization therapy (CRT) on both LA morphology and function and to assess the impact of LA reservoir strain (LARS) on left ventricular (LV) systolic and diastolic remodelling after CRT.
Methods And Results: Two hundred and twenty-one CRT-candidates were prospectively included in the study in four tertiary centres and underwent echocardiography before CRT-implantation and at 6-month follow-up (FU).
Microplastics (MPs) and microfibers (MFs) in stormwater have been poorly investigated. Data on their intra and inter rain events variability over time are still sparse. For the first time, the variability of microlitter concentrations in stormwater has been studied.
View Article and Find Full Text PDFCardiac resynchronization therapy (CRT) is an implant-based therapy applied to patients with a specific heart failure (HF) profile. The identification of patients that may benefit from CRT is a challenging task and the application of current guidelines still induce a non-responder rate of about 30%. Several studies have shown that the assessment of left ventricular (LV) mechanics by speckle tracking echocardiography can provide useful information for CRT patient selection.
View Article and Find Full Text PDFBackground: The mechanisms of improvement of left ventricular (LV) function with cardiac resynchronization therapy (CRT) are not yet elucidated. The aim of this study was to characterize CRT responder profiles through clustering analysis, on the basis of clinical and echocardiographic preimplantation data, integrating automatic quantification of longitudinal strain signals.
Methods: This was a multicenter observational study of 250 patients with chronic heart failure evaluated before CRT device implantation and followed up to 4 years.