Publications by authors named "A Gali"

Article Synopsis
  • Silicon-based color-centers (SiCCs) are being developed as promising quantum-light sources for integration with telecom-range Silicon Photonics platforms.
  • Traditional methods for creating SiCCs face challenges in precisely controlling emitter positions due to random ion-implantation processes.
  • A new method using low-temperature epitaxial growth allows for precise positioning of SiCCs, enabling the formation of various types, including a newly identified G'-center, which shows potential for single-photon sources and improved optical properties.
View Article and Find Full Text PDF

Microporous glassy polymer membranes suffer from physical aging, which adversely affects their performance in the short time frame. We show that the aging propensity of a model microporous polymer, poly(1-trimethylsilyl-1-propyne) (PTMSP), can be effectively mitigated by blending with as little as 5 wt % porous polymer network (PPN) composed of triptycene and isatin. The aging behavior of these materials was monitored via N pure gas permeability measurements over the course of 3 weeks, showing a 14% decline in PTMSP blended with 5 wt % PPN vs a 41% decline in neat PTMSP.

View Article and Find Full Text PDF

Spin-active optical emitters in silicon carbide are excellent candidates toward the development of scalable quantum technologies. However, efficient photon collection is challenged by undirected emission patterns from optical dipoles, as well as low total internal reflection angles due to the high refractive index of silicon carbide. Based on recent advances with emitters in silicon carbide waveguides, we now demonstrate a comprehensive study of nanophotonic waveguide-to-fiber interfaces in silicon carbide.

View Article and Find Full Text PDF

We study the fluorescence of nanodiamond ensembles as a function of static external magnetic field and observe characteristic dip features close to the zero field with potential for magnetometry applications. We analyze the dependence of the feature's width and the contrast of the feature on the size of the diamond (in the range 30 nm-3000 nm) and on the strength of a bias magnetic field applied transversely to the field being scanned. We also perform optically detected magnetic resonance (ODMR) measurements to quantify the strain splitting of the zero-field ODMR resonance across various nanodiamond sizes and compare it with the width and contrast measurements of the zero-field fluorescence features for both nanodiamonds and bulk samples.

View Article and Find Full Text PDF

Coherent light sources emitting in the terahertz range are highly sought after for fundamental research and applications. Terahertz lasers rely on achieving population inversion. We demonstrate the generation of terahertz radiation using nitrogen-vacancy centers in a diamond single crystal.

View Article and Find Full Text PDF