Publications by authors named "A Gal-On"

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection.

View Article and Find Full Text PDF

Powdery mildew (PM) diseases may severely limit the production of various crops, including members of the family Cucurbitaceae. Successful PM infection relies on the () plant gene family, which encodes susceptibility factors essential for fungus penetration into the host cell. In cucumber (), natural mutations in confer resistance to the PM pathogen .

View Article and Find Full Text PDF

RNA-dependent RNA polymerase 1 (RDR1) plays a crucial defense role against plant viruses by secondary amplification of viral double-stranded RNA in the gene-silencing pathway. In this study, it was found that melon encodes four RDR1 genes ( and similar to the gene family of cucumber (. ).

View Article and Find Full Text PDF

During tobamovirus-host coevolution, tobamoviruses developed numerous interactions with host susceptibility factors and exploited these interactions for replication and movement. The plant-encoded TOBAMOVIRUS MULTIPLICATION (TOM) susceptibility proteins interact with the tobamovirus replicase proteins and allow the formation of the viral replication complex. Here CRISPR/Cas9-mediated mutagenesis allowed the exploration of the roles of SlTOM1a, SlTOM1b, and SlTOM3 in systemic tobamovirus infection of tomato.

View Article and Find Full Text PDF

Virus-host coevolution often drives virus immune escape. However, it remains unknown whether natural variations of plant virus resistance are enriched in genes of RNA interference (RNAi) pathway known to confer essential antiviral defense in plants. Here, we report two genome-wide association study screens to interrogate natural variation among wild-collected Arabidopsis thaliana accessions in quantitative resistance to the endemic cucumber mosaic virus (CMV).

View Article and Find Full Text PDF