Publications by authors named "A G Terekhov"

Ionic liquids (ILs) have proven extremely useful for a wide variety of roles, including as propellants for electrospray thrusters (ETs), due to their unique physical and chemical properties, as well as the potential tunability of those properties, through chemical engineering. However, there is a lack of literature exploring the effects of IL properties on ET operation. This paper presents experimental results investigating key physical properties of the common ILs 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMI-TFSI), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BMI-TFO), EAN, and Bmpyr-DCA not provided by manufacturers or reported in the literature, namely, their electrochemical stability windows (ESWs) and contact angles.

View Article and Find Full Text PDF

Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.

View Article and Find Full Text PDF

The minimum achievable particle beam emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source. This is measurable as the mean longitudinal and transverse energy spreads in the photoemitted electron beam (MLE and MTE respectively); consequently, MLE and MTE are notable figures of merit for photocathodes used as electron sources in particle accelerators. The overall energy spread is defined by the sum of the MTE and the MLE, and the minimization of MTE is crucial to reduce emittance and thus generate a high-brightness electron beam.

View Article and Find Full Text PDF

Albeit multiple studies demonstrated that (VV) have a crucial importance in vascular pathology, the informative markers and metrics of vascular inflammation defining the development of intimal hyperplasia (IH) have been vaguely studied. Here, we employed two rat models (balloon injury of the abdominal aorta and the same intervention optionally complemented with intravenous injections of calciprotein particles) and a clinical scenario (arterial and venous conduits for coronary artery bypass graft (CABG) surgery) to investigate the pathophysiological interconnections among VV, myeloperoxidase-positive (MPO) clusters, and IH. We found that the amounts of VV and MPO clusters were strongly correlated; further, MPO clusters density was significantly associated with balloon-induced IH and increased at calciprotein particle-provoked endothelial dysfunction.

View Article and Find Full Text PDF

Corn arabinoxylan (CAX), a cell wall-derived dietary fiber, was extracted with alkali, partially purified, and treated with hydrolytic enzymes in order to investigate the relationship of fine structure and fermentability by the human gut microbiota. Glycosyl composition and linkage analysis of CAX and two hydrolysates, coupled with molecular size analysis, indicated an organized structural feature of the native polymer, which consists of a repeating structural subunit containing complex branching patterns along the xylan backbone and flanked by regions of less complexity. The two lengths of the highly branched subunit were isolated and were shown to have enhanced slow fermentation property compared to the native structure (3.

View Article and Find Full Text PDF