Neural networks implemented in memristor-based hardware can provide fast and efficient in-memory computation, but traditional learning methods such as error back-propagation are hardly feasible in it. Spiking neural networks (SNNs) are highly promising in this regard, as their weights can be changed locally in a self-organized manner without the demand for high-precision changes calculated with the use of information almost from the entire network. This problem is rather relevant for solving control tasks with neural-network reinforcement learning methods, as those are highly sensitive to any source of stochasticity in a model initialization, training, or decision-making procedure.
View Article and Find Full Text PDFProcedia Comput Sci
November 2022
The effectiveness of predicting the dynamics of the coronavirus pandemic for Russia as a whole and for Moscow is studied for a two-year period beginning March 2020. The comparison includes well-proven population models and statistic methods along with a new data-driven model based on the LSTM neural network. The latter model is trained on a set of Russian regions simultaneously, and predicts the total number of cases on the 14-day forecast horizon.
View Article and Find Full Text PDFThe large amount of data accumulated so far on the dynamics of the COVID-19 outbreak has allowed assessing the accuracy of forecasting methods in retrospect. This work compares several basic time series analysis methods, including machine learning methods, for forecasting the number of confirmed cases for some days ahead. Year-long data for all regions of Russia has been used from the Yandex DataLens platform.
View Article and Find Full Text PDFNeuromorphic systems consisting of artificial neurons and memristive synapses could provide a much better performance and a significantly more energy-efficient approach to the implementation of different types of neural network algorithms than traditional hardware with the Von-Neumann architecture. However, the memristive weight adjustment in the formal neuromorphic networks by the standard back-propagation techniques suffers from poor device-to-device reproducibility. One of the most promising approaches to overcome this problem is to use local learning rules for spiking neuromorphic architectures which potentially could be adaptive to the variability issue mentioned above.
View Article and Find Full Text PDFPatol Fiziol Eksp Ter
January 2014
Using the Doppler ultrasonography method the condition of brain blood circulation of 90 patients with supratentorial brain tumors (gliomas--43, meningiomas--34, metastasis--9) during pre-surgical period was studied. The factors changing brain blood circulation at patients with with supratentorial brain tumors were brain displacement, increase of intracranial pressure, histologic structure and the first symptoms duration of illness. Localization (for an exception of an occipital lobe) and the size of a tumor directly didn't render influence on blood circulation parameters.
View Article and Find Full Text PDF