Mitochondria are affected by chemical substances and play a critical role in drug-induced liver injury (DILI). Chemical substances can have a significant impact on various cellular processes, such as the disruption of oxidative phosphorylation, oxidative stress, and alteration of glucose metabolism. Given the consequences of these effects, it is crucial to understand the molecular pathways of chemical substances in the context of hepatotoxicity to prevent and treat DILI.
View Article and Find Full Text PDFThe proton electrochemical gradient generated by the respiratory chain activity accounts for over 90% of the available respiratory energy and, as such, its evaluation and accurate measurement regarding total values and fluctuations are an invaluable component of the understanding of mitochondrial function. Consequently, alterations in electric potential across the inner mitochondrial membrane generated by differential protonic accumulation and transport are known as the mitochondrial membrane potential, or Δψ, and are reflective of the functional metabolic status of mitochondria. There are several experimental approaches to measure Δψ, ranging from fluorometric evaluations to electrochemical probes.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) represents a global health concern, ranking as the sixth most common malignancy worldwide and the third leading cause of cancer-related mortality. Despite advances in research, the diagnosis and prognosis of such malignancy remain challenging. Alpha-fetoprotein, the current serum biomarker used in the management of HCC, has limited sensitivity and specificity, making early detection and effective management more difficult.
View Article and Find Full Text PDFBackground: Induction chemotherapy has been described as an option in locally advanced oral cavity squamous cell carcinoma when the surgical morbidity is expected to be high. This work aimed to evaluate the outcome and safety of induction chemotherapy in this setting.
Methods: We performed a retrospective and observational study including patients with oral cavity squamous cell carcinoma, treated with induction chemotherapy between January 2010 and December 2018.
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC).
View Article and Find Full Text PDF