The dynamic interaction between cells and their substrate is a cornerstone of biomaterial-based tissue regeneration focused on unraveling the complex factors that govern this crucial relationship. A key challenge is translating physical cues from 2D to 3D due to limitations in current biofabrication techniques. In response, this study introduces an innovative approach that combines additive and subtractive manufacturing for precise surface patterning of 3D printed scaffolds.
View Article and Find Full Text PDFCalcium phosphate cement (CPC) has evolved as an appealing bone substitute material, especially since CPCs were combined with poly(lactic-co-glycolic acid) (PLGA) porogens to render the resulting CPC/PLGA composite degradable. In view of the multiple variables of CPC and PLGA used previously, the effect of CPC composition and PLGA porogen morphology (i.e.
View Article and Find Full Text PDFBiofabrication techniques allow for the construction of biocompatible and biofunctional structures composed from biomaterials, cells and biomolecules. Bioprinting is an emerging 3D printing method which utilizes biomaterial-based mixtures with cells and other biological constituents into printable suspensions known as bioinks. Coupled with automated design protocols and based on different modes for droplet deposition, 3D bioprinters are able to fabricate hydrogel-based objects with specific architecture and geometrical properties, providing the necessary environment that promotes cell growth and directs cell differentiation towards application-related lineages.
View Article and Find Full Text PDFSuccessful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic--glycolic acid) particle size and loading concentration on material accuracy, machine precision, and degradation of 3D printed poly(-caprolactone)-based scaffolds.
View Article and Find Full Text PDF