Publications by authors named "A G Kusne"

Abstract: The burgeoning field of materials informatics necessitates a focus on educating the next generation of materials scientists in the concepts of data science, artificial intelligence (AI), and machine learning (ML). In addition to incorporating these topics in undergraduate and graduate curricula, regular hands-on workshops present the most effective medium to initiate researchers to informatics and have them start applying the best AI/ML tools to their own research. With the help of the Materials Research Society (MRS), members of the MRS AI Staging Committee, and a dedicated team of instructors, we successfully conducted workshops covering the essential concepts of AI/ML as applied to materials data, at both the Spring and Fall Meetings in 2022, with plans to make this a regular feature in future meetings.

View Article and Find Full Text PDF

The structural solution problem can be a daunting and time-consuming task. Especially in the presence of impurity phases, current methods, such as indexing, become more unstable. In this work, the novel approach of semi-supervised learning is applied towards the problem of identifying the Bravais lattice and the space group of inorganic crystals.

View Article and Find Full Text PDF

Active learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools.

View Article and Find Full Text PDF

Recently there has been an ever-increasing trend in the use of machine learning (ML) and artificial intelligence (AI) methods by the materials science, condensed matter physics, and chemistry communities. This perspective article identifies key scientific, technical, and social opportunities that the materials community must prioritize to consistently develop and leverage Scientific AI (SciAI) to provide a credible path towards the advancement of current materials-limited technologies. Here we highlight the intersections of these opportunities with a series of proposed paths forward.

View Article and Find Full Text PDF

High-throughput experimental (HTE) techniques are an increasingly important way to accelerate the rate of materials research and development for many technological applications. However, there are very few publications on the reproducibility of the HTE results obtained across different laboratories for the same materials system, and on the associated sample and data exchange standards. Here, we report a comparative study of Zn-Sn-Ti-O thin films materials using high-throughput experimental methods at National Institute of Standards and Technology (NIST) and National Renewable Energy Laboratory (NREL).

View Article and Find Full Text PDF