Protein sequence evolution in the presence of epistasis makes many previously acceptable amino acid residues at a site unfavorable over time. This phenomenon of entrenchment has also been observed with neutral substitutions using Potts Hamiltonian models. Here, we show that simulations using these models often evolve non-neutral proteins.
View Article and Find Full Text PDFProtein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory folded conformation, due to intrinsic sequence effects. Here we investigate the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a thermodynamic cycle involving many (n = 108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations.
View Article and Find Full Text PDFProtein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations.
View Article and Find Full Text PDFProtein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations.
View Article and Find Full Text PDF