Publications by authors named "A G Emslie"

The scaling laws which relate the peak temperature and volumetric heating rate to the pressure and length for static coronal loops were established over 40 years ago; they have proved to be of immense value in a wide range of studies. Here we extend these scaling laws to loops, where enthalpy flux becomes important to the energy balance, and study impulsive heating/filling characterized by upward enthalpy flows. We show that for collision-dominated thermal conduction, the functional dependencies of the scaling laws are the same as for the static case, when the radiative losses scale as , but with a different constant of proportionality that depends on the Mach number of the flow.

View Article and Find Full Text PDF

The heat flux in a plasma is determined by the degree of anisotropy in the particle distribution function, which is in turn driven by gradients in the ambient density and temperature. When the mean free path at the thermal speed is substantially smaller than the scale length associated with the temperature variation, the heat flux simply depends on the local value of the temperature gradient. However, when the temperature scale length and mean free path are comparable, heat conduction becomes substantially non-local in character: the magnitude of the heat flux now depends on the overall temperature profile and is generally smaller than the locally determined value.

View Article and Find Full Text PDF

The hard X-ray emission in a solar flare is typically characterized by a number of discrete sources, each with its own spectral, temporal, and spatial variability. Establishing the relationship among these sources is critical to determining the role of each in the energy release and transport processes that occur within the flare. In this paper we present a novel method to identify and characterize each source of hard X-ray emission.

View Article and Find Full Text PDF

A considerable fraction of the energy in a solar flare is released as suprathermal electrons; such electrons play a major role in energy deposition in the ambient atmosphere, and hence the atmospheric response to flare heating. Historically, the transport of these particles has been approximated through a deterministic approach in which first-order secular energy loss to electrons in the ambient target is treated as the dominant effect, with second-order diffusive terms (in both energy and angle) being generally either treated as a small correction or neglected. However, it has recently been pointed out that while neglect of diffusion in energy may indeed be negligible, diffusion in angle is of the same order as deterministic scattering and hence must be included.

View Article and Find Full Text PDF

Using the "enthalpy-based thermal evolution of loops" (EBTEL) model, we investigate the hydrodynamics of the plasma in a flaring coronal loop in which heat conduction is limited by turbulent scattering of the electrons that transport the thermal heat flux. The EBTEL equations are solved analytically in each of the two (conduction-dominated and radiation-dominated) cooling phases. Comparison of the results with typical observed cooling times in solar flares shows that the turbulent mean free path lies in a range corresponding to a regime in which classical (collision-dominated) conduction plays at most a limited role.

View Article and Find Full Text PDF