Reliable computational methodologies and basis sets for modeling x-ray spectra are essential for extracting and interpreting electronic and structural information from experimental x-ray spectra. In particular, the trade-off between numerical accuracy and computational cost due to the size of the basis set is a major challenge, since molecular orbitals undergo extreme relaxation in the core-hole state. To gain clarity on the changes in electronic structure induced by the formation of a core-hole, the use of sufficiently flexible basis for expanding the orbitals, particularly for the core region, has been shown to be essential.
View Article and Find Full Text PDFAnthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena.
View Article and Find Full Text PDFMutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.
View Article and Find Full Text PDFLocal hyperthermia is gaining considerable interest due to its promising antitumor effects. In this context, dual magneto-photothermal cancer therapy holds great promise. For this purpose, the use of nanomaterials has been proposed.
View Article and Find Full Text PDFLanguage interventions may yield greater benefits for younger children than their older counterparts, making it critical to evaluate children's language skills as early as possible. Yet, assessing young children's language presents many challenges, such as limited attention spans, low expressive language, and hesitancy to speak with an unfamiliar examiner. To address these challenges, the Quick Interactive Language Screener for Toddlers (QUILS:TOD; for children 24- to 36-months of age) was developed as a quick, tablet-based language screener capable of assessing children's vocabulary, syntax, and word learning skills.
View Article and Find Full Text PDF