Publications by authors named "A G Buhmann"

Rising sea levels and salinization of groundwater due to global climate change result in fast-dwindling sources of freshwater. Therefore, it is important to find alternatives to grow food crops and vegetables. Halophytes are naturally evolved salt-tolerant plants that are adapted to grow in environments that inhibit the growth of most glycophytic crop plants substantially.

View Article and Find Full Text PDF

Halophytes, salt-tolerant plants, are a source of valuable secondary metabolites with potential economic value. The steady-state pools of many stress-related metabolites are already enhanced in halophytes when compared with glycophytes, but growth under conditions away from the optimum can induce stress and consequently result in changes to secondary metabolites such as antioxidants. However, direct evidence for increasing the concentration of valuable secondary metabolites as a consequence of altering the salinity of the growing environment still remains equivocal.

View Article and Find Full Text PDF

Salt tolerance of halophytes relies on several strategies, among them, the production of species-specific secondary metabolites. Chemically, a broad variety of secondary compounds of economic interest is present in halophytes. Several of these secondary compounds are restricted to halophytic species or are found in higher concentrations than in glycophytes.

View Article and Find Full Text PDF

Helicobacter pylori resists gastric acidity by modulating the proton-gated urea channel UreI, allowing for pH(out)-dependent regulation of urea access to intrabacterial urease. We employed pH- and Ca(2+)-sensitive fluorescent dyes and confocal microscopy to determine the location, rate, and magnitude of pH changes in an H. pylori-AGS cell coculture model, comparing wild-type bacteria with nonpolar ureI-deletion strains (ureI-ve).

View Article and Find Full Text PDF

ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid.

View Article and Find Full Text PDF