Publications by authors named "A Fukasawa"

Production of hard X-ray via inverse Compton scattering at photon energies below 100 keV range aimed at potential applications in medicine and material research is reported. Experiments have been performed at the Brookhaven National Laboratory, Accelerator Test Facility, employing the counter collision of a 70 MeV, 0.3 nC electron beam with a near infra-red Nd: YAG laser (1064 nm wavelength) pulse containing ~ 100 mJ in a single shot basis.

View Article and Find Full Text PDF

Nanosecond resolved fluorescence correlation spectroscopy (ns-FCS) based on two-color fluorescence detection is a powerful strategy for investigating the fast dynamics of biological macromolecules labeled with donor and acceptor fluorophores. The standard methods of ns-FCS use two single-photon avalanche diodes (SPADs) for the detection of single-color signals (four SPADs for two-color signals) to eliminate the afterpulse artifacts of SPAD at the expense of the efficiency of utilizing photon data in the calculation of correlograms. Herein, we demonstrated that hybrid photodetectors (HPDs) enable the recording of fluorescence photons in ns-FCS based on the minimal system using two HPDs for the detection of two-color signals.

View Article and Find Full Text PDF

Macromolecule-antitumour drug conjugates can reach tumour sites specifically via the enhanced permeability and retention (EPR) effect. It is desirable to release the drug efficiently from the conjugate at acidic pH in the tumour tissue or in the endosomes of cancer cells. In this study, we attempted to produce a carrier system with a labile chemical bond at acidic pH.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor β (TGF-β) in certain kinds of cancer cells through the induction of Snail, a key regulator of EMT. We have previously found that TGF-β remarkably induces Snail expression in cooperation with Ras signals; however, the underlying mechanism of this synergism has not yet been determined.

View Article and Find Full Text PDF

We report experimental measurements of narrow-band, single-mode excitation, and drive beam energy modulation, in a dielectric wakefield accelerating structure with planar geometry and Bragg-reflector boundaries. A short, relativistic electron beam (∼1  ps) with moderate charge (∼100  pC) is used to drive the wakefields in the structure. The fundamental mode of the structure is reinforced by constructive interference in the alternating dielectric layers at the boundary, and is characterized by the spectral analysis of the emitted coherent Cherenkov radiation signal.

View Article and Find Full Text PDF