Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly population. Variants in the HTRA1-ARMS2 locus have been linked to increased AMD risk. In the present study we investigated the impact of elevated HtrA1 levels on the retina pigment epithelial (RPE) secretome using a polarized culture system.
View Article and Find Full Text PDFHyperfunction of the mTORC1 pathway has been associated with idiopathic and syndromic forms of autism spectrum disorder (ASD), including tuberous sclerosis, caused by loss of either TSC1 or TSC2. It remains largely unknown how developmental processes and biochemical signaling affected by mTORC1 dysregulation contribute to human neuronal dysfunction. Here, we have characterized multiple stages of neurogenesis and synapse formation in human neurons derived from TSC2-deleted pluripotent stem cells.
View Article and Find Full Text PDFPurpose: Human pluripotent stem cell (hPSC)-derived cellular models have great potential to enable drug discovery and improve translation of preclinical insights to the clinic. We have developed a hPSC-derived neural precursor cell model for studying early events in human brain development. We present protein-level characterization of this model, using a multiplexed SRM approach, to establish reproducibility and physiological relevance; essential prerequisites for utilization of the neuronal development model in phenotypic screening-based drug discovery.
View Article and Find Full Text PDFPurpose: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine.
Methods: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry.
Elastin is one of the major extracellular matrix proteins associated with connective tissue. Its degradation leads to the liberation of the unique amino acids desmosine and isodesmosine. These have shown utility as biomarkers of elastin breakdown for disease progression, patient stratification, and drug efficacy.
View Article and Find Full Text PDF