Candida parapsilosis is an important, emerging opportunistic fungal pathogen. Highly mannosylated fungal cell wall proteins are initial contact points with host immune systems. In Candida albicans, Och1 is a Golgi α1,6-mannosyltransferase that plays a key role in the elaboration of the N-linked mannan outer chain.
View Article and Find Full Text PDFProtein glycosylation pathways are conserved metabolic processes in eukaryotic organisms and are required for cell fitness. In fungal pathogens, the N-linked glycosylation pathway is indispensable for proper cell wall composition and virulence. In Sporothrix schenckii sensu stricto, the causative agent of sporotrichosis, little is known about this glycosylation pathway.
View Article and Find Full Text PDFCandida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C.
View Article and Find Full Text PDFSporothrix schenckii is a fungal pathogen of humans and the etiological agent of sporotrichosis. In fungi, proper protein glycosylation is usually required for normal composition of cell wall and virulence. Upon addition of precursor oligosaccharides to nascent proteins in the endoplasmic reticulum, glycans are further modified by Golgi-glycosyl transferases.
View Article and Find Full Text PDFThe N-linked glycosylation is a ubiquitous protein modification in eukaryotic cells. During the N-linked glycan synthesis, the precursor Glc(3)Man(9)GlcNAc(2) is processed by endoplasmic reticulum (ER) glucosidases I, II and α1,2-mannosidase, before transporting to the Golgi complex for further structure modifications. In fungi of medical relevance, as Candida albicans and Aspergillus, it is well known that ER glycosidases are important for cell fitness, cell wall organization, virulence, and interaction with the immune system.
View Article and Find Full Text PDF