Transition-metal dichalcogenide monolayers possess large exciton binding energy and a robust valley degree of freedom, making them a viable platform for the development of spintronic devices capable of operating at room temperature. The development of such monolayer TMD-based spintronic devices requires strong spin-dependent interactions and effective spin transport. This can be achieved by employing exciton-polaritons.
View Article and Find Full Text PDFThe realization of efficient optical devices depends on the ability to harness strong nonlinearities, which are challenging to achieve with standard photonic systems. Exciton-polaritons formed in hybrid organic-inorganic perovskites offer a promising alternative, exhibiting strong interactions at room temperature (RT). Despite recent demonstrations showcasing a robust nonlinear response, further progress is hindered by an incomplete understanding of the microscopic mechanisms governing polariton interactions in perovskite-based strongly coupled systems.
View Article and Find Full Text PDFRoom temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method.
View Article and Find Full Text PDFEnergy transfer is a ubiquitous phenomenon that delivers energy from a blue-shifted emitter to a red-shifted absorber, facilitating wide photonic applications. Two-dimensional (2D) semiconductors provide unique opportunities for exploring novel energy transfer mechanisms in the atomic-scale limit. Herein, we have designed a planar optical microcavity-confined MoS/hBN/WS heterojunction, which realizes the strong coupling among donor exciton, acceptor exciton, and cavity photon mode.
View Article and Find Full Text PDF