Epidemiological data across the United States of America illustrate health disparities in COVID-19 infection, hospitalization, and mortality by race/ethnicity. However, limited information is available from prospective observational studies in hospitalized patients, particularly for American Indian or Alaska Native (AI/AN) populations. Here, we present risk factors associated with severe COVID-19 and mortality in patients (4/2020-12/2021, n = 475) at the University of New Mexico Hospital.
View Article and Find Full Text PDFBiotechnol Rep (Amst)
March 2018
Constitutively active promoter elements for heterologous protein production in are scarce. Here, the promoter of the gene cluster from NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into Transformants produced up to 13.
View Article and Find Full Text PDFBackground: Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T.
View Article and Find Full Text PDFAntimicrobial peptides (AMP's) are small peptides that have evolved as part of an innate cell defense mechanism in many organisms. We are currently developing methodologies to use these molecules to control the transmission of vector borne diseases utilizing a paratransgenic strategy. In this approach, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission.
View Article and Find Full Text PDFConventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen.
View Article and Find Full Text PDF