Tartary buckwheat (Fagopyrum tataricum) is esteemed as a medicinal crop due to its high nutritional and health value. However, the genetic basis for the variations in Tartary buckwheat grain ionome remains inadequately understood. Through genome-wide association studies (GWAS) on grain ionome, 52 genetic loci are identified associated with 10 elements undergoing selection.
View Article and Find Full Text PDFPlant metabolism is profoundly affected by various abiotic stresses. Consequently, plants must reconfigure their metabolic networks to sustain homeostasis while synthesizing compounds that mitigate stress. This aspect, with the current intensified climate impact results in more frequent abiotic stresses on a global scale.
View Article and Find Full Text PDFBackground: Identifying transcriptional cis-regulatory elements (CREs) and understanding their role in gene expression are essential for the precise manipulation of gene expression and associated phenotypes. This knowledge is fundamental for advancing genetic engineering and improving crop traits.
Results: We here demonstrate that CREs can be accurately predicted and utilized to precisely regulate gene expression beyond the range of natural variation.
Curr Opin Plant Biol
March 2025
Improving plant nitrogen (N) and carbon (C) acquisition and assimilation is a major challenge for global agriculture, food security, and ecological sustainability. Emerging synthetic biology techniques, including directed evolution, artificial intelligence (AI)-guided enzyme design, and metabolic engineering, have opened new avenues for optimizing nitrogenase to fix atmospheric N in plants, engineering Rhizobia or other nitrogen-fixing bacteria for symbiotic associations with both legume and nonlegume crops, and enhancing carbon fixation to improve photosynthetic efficiency and source-to-sink assimilate fluxes. Here, we discuss the potential for engineering nitrogen fixation and carbon fixation mechanisms in plants, from rational and AI-driven optimization of nitrogen and carbon fixation cycles.
View Article and Find Full Text PDFPhotorespiration is an essential metabolic repair process in oxygenic photosynthesis, as it detoxifies Rubisco's inhibitory oxygenase byproduct, 2-phosphoglycolate (2-PG). It has been demonstrated that improving endogenous photorespiration in C3 plants through enzyme overexpression can enhance photosynthesis and promote plant growth. However, the potential impact of improved photorespiration in leaves on heterotrophic roots remained unexplored.
View Article and Find Full Text PDF