We demonstrate spontaneous symmetry breaking in the diffraction of a laser-driven grating with memory in its nonlinear response. We observe, experimentally and theoretically, asymmetric diffraction even when the grating and illumination are symmetric. Our analysis reveals how diffracted waves can spontaneously acquire momentum parallel to the lattice vector in quantities unconstrained by the grating period.
View Article and Find Full Text PDFPlasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e.
View Article and Find Full Text PDFOptical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation.
View Article and Find Full Text PDFUpconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization.
View Article and Find Full Text PDF