Publications by authors named "A Fernandez-Dominguez"

Article Synopsis
  • * The research focuses on strong light-matter coupling using electron wavepackets interacting with a nanophotonic cavity and a two-level emitter, framed by a model Hamiltonian from macroscopic quantum electrodynamics.
  • * Techniques like electron-energy-loss and cathodoluminescence spectroscopies are discussed, highlighting how modulated electron beams can manipulate various polaritonic targets with intricate energy states.
View Article and Find Full Text PDF

We demonstrate spontaneous symmetry breaking in the diffraction of a laser-driven grating with memory in its nonlinear response. We observe, experimentally and theoretically, asymmetric diffraction even when the grating and illumination are symmetric. Our analysis reveals how diffracted waves can spontaneously acquire momentum parallel to the lattice vector in quantities unconstrained by the grating period.

View Article and Find Full Text PDF

Plasmonic nanoantennas have attracted much attention lately, among other reasons because of the directionality of light emitted by fluorophores coupled to their localized surface plasmon resonances. Plasmonic picocavities, i.e.

View Article and Find Full Text PDF

Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation.

View Article and Find Full Text PDF

Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization.

View Article and Find Full Text PDF