A review of different modeling techniques, specifically in the framework of carbon-based nanomaterials (CNMs, including nanoparticles such as graphene and carbon nanotubes-CNTs) and the composites and devices that can be derived from them, is presented. The article emphasizes that the overall performance of these materials depends on mechanisms that operate across different time and spatial scales, requiring tailored approaches based on the material type, size, internal structure/configuration, and the specific properties of interest. Far from attempting to cover the entire spectrum of models, this review examines a wide range of analysis and simulation techniques, highlighting their potential use, some of their weaknesses and strengths, and presenting the latest developments and some application examples.
View Article and Find Full Text PDFVanillyl alcohol has emerged as a widely used building block for the development of biobased monomers. More specifically, the cationic (photo-)polymerization of the respective diglycidyl ether (DGEVA) is known to produce materials of outstanding thermomechanical performance. Generally, chain transfer agents (CTAs) are of interest in cationic resins not only because they lead to more homogeneous polymer networks but also because they strikingly improve the polymerization speed.
View Article and Find Full Text PDFThis study presents a novel approach to enhancing indoor navigation in crowded multi-terminal airports using visible light communication (VLC) technology. By leveraging existing luminaires as transmission points, encoded messages are conveyed through modulated light signals to provide location-specific guidance. The objectives are to facilitate navigation, optimize routes, and improve system performance through Edge/Fog integration.
View Article and Find Full Text PDFThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high transverse momentum (high p_{T}) hadron trigger in proton-proton and central Pb-Pb collisions at sqrt[s_{NN}]=5.02 TeV. A data-driven statistical method is used to mitigate the large uncorrelated background in central Pb-Pb collisions.
View Article and Find Full Text PDF