Background: Drug discovery strongly relies on the thorough evaluation of preclinical experimental studies. In the context of pulmonary fibrosis, micro-computed tomography (µCT) and histology are well-established and complementary tools for assessing, in animal models, disease progression and response to treatment. µCT offers dynamic, real-time insights into disease evolution and the effects of therapies, while histology provides a detailed microscopic examination of lung tissue.
View Article and Find Full Text PDFThis work aimed to automatically segment and classify the coronary arteries with either normal or anomalous origin from the aorta (AAOCA) using convolutional neural networks (CNNs), seeking to enhance and fasten clinician diagnosis. We implemented three single-view 2D Attention U-Nets with 3D view integration and trained them to automatically segment the aortic root and coronary arteries of 124 computed tomography angiographies (CTAs), with normal coronaries or AAOCA. Furthermore, we automatically classified the segmented geometries as normal or AAOCA using a decision tree model.
View Article and Find Full Text PDFThe aim of our study is to validate a totally automated deep learning (DL)-based segmentation pipeline to screen abdominal aortic aneurysms (AAA) in computed tomography angiography (CTA) scans. We retrospectively evaluated 73 thoraco-abdominal CTAs (48 AAA and 25 control CTA) by means of a DL-based segmentation pipeline built on a 2.5D convolutional neural network (CNN) architecture to segment lumen and thrombus of the aorta.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis, the archetype of pulmonary fibrosis (PF), is a chronic lung disease of a poor prognosis, characterized by progressively worsening of lung function. Although histology is still the gold standard for PF assessment in preclinical practice, histological data typically involve less than 1% of total lung volume and are not amenable to longitudinal studies. A miniaturized version of computed tomography (µCT) has been introduced to radiologically examine lung in preclinical murine models of PF.
View Article and Find Full Text PDFPurpose: Although segmentation of Abdominal Aortic Aneurysms (AAA) thrombus is a crucial step for both the planning of endovascular treatment and the monitoring of the intervention's outcome, it is still performed manually implying time consuming operations as well as operator dependency. The present paper proposes a fully automatic pipeline to segment the intraluminal thrombus in AAA from contrast-enhanced Computed Tomography Angiography (CTA) images and to subsequently analyze AAA geometry.
Methods: A deep-learning-based pipeline is developed to localize and segment the thrombus from the CTA scans.