Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFThe Languages of the Indian subcontinent are less represented in current NLP literature. To mitigate this gap, we present the IndicDialogue dataset, which contains subtitles and dialogues in 10 major Indic languages: Hindi, Bengali, Marathi, Telugu, Tamil, Urdu, Odia, Sindhi, Nepali, and Assamese. This dataset is sourced from OpenSubtitles.
View Article and Find Full Text PDFDespite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes.
View Article and Find Full Text PDFThe relatively new tools of brain elastography have established a general trendline for healthy, aging adult humans, whereby the brain's viscoelastic properties 'soften' over many decades. Earlier studies of the aging brain have demonstrated a wide spectrum of changes in morphology and composition towards the later decades of lifespan. This leads to a major question of causal mechanisms: of the many changes documented in structure and composition of the aging brain, which ones drive the long term trendline for viscoelastic properties of grey matter and white matter? The issue is important for illuminating which factors brain elastography is sensitive to, defining its unique role for study of the brain and clinical diagnoses of neurological disease and injury.
View Article and Find Full Text PDFThe objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients.
View Article and Find Full Text PDF