Publications by authors named "A FANKHAUSER"

Purpose: Evaluate and compare the retention time on the canine ocular surface of crosslinked hyaluronic acid (X-HA), linear hyaluronic acid (L-HA) and saline solution using fluorescent compounds (fluorescein sodium salt, Alexa Fluor 488 cadaverine and Alexa Fluor 488 maleimide).

Methods: 0.9% saline solution (SAL) was combined with fluorescein sodium salt.

View Article and Find Full Text PDF

Isoprene has the highest atmospheric emissions of any nonmethane hydrocarbon, and isoprene epoxydiols (IEPOX) are well-established oxidation products and the primary contributors forming isoprene-derived secondary organic aerosol (SOA). Highly acidic particles (pH 0-3) widespread across the lower troposphere enable acid-driven multiphase chemistry of IEPOX, such as epoxide ring-opening reactions forming methyltetrol sulfates through nucleophilic attack of sulfate (SO). Herein, we systematically demonstrate an unexpected decrease in SOA formation from IEPOX on highly acidic particles (pH < 1).

View Article and Find Full Text PDF

Organosulfates formed from heterogeneous reactions of organic-derived oxidation products with sulfate ions can account for >15% of secondary organic aerosol (SOA) mass, primarily in submicron particles with long atmospheric lifetimes. However, fundamental understanding of organosulfate molecular structures is limited, particularly at atmospherically relevant acidities (pH = 0-6). Herein, for 2-methyltetrol sulfates (2-MTSs), an important group of isoprene-derived organosulfates, protonation state and vibrational modes were studied using Raman and infrared spectroscopy, as well as density functional theory (DFT) calculations of vibrational spectra for neutral (RO-SOH) and anionic/deprotonated (RO-SO) structures.

View Article and Find Full Text PDF

The β-particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched ErO. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required.

View Article and Find Full Text PDF

The current knowledge of the half-lives (T1/2) of several radiolanthanides is either affected by a high uncertainty or is still awaiting confirmation. The scientific information deriving from this imprecise T1/2 data has a significant impact on a variety of research fields, e.g.

View Article and Find Full Text PDF