Publications by authors named "A F de Vilhena"

Nuclear proliferation marker MIB-1 (Ki-67) immunohistochemistry (IHC) is used to examine tumor cell proliferation. However, the diagnostic or prognostic value of the Ki-67 nuclear staining intensity and location, defined as nuclear gradient (NG), has not been assessed. This study examined the potential association between Ki-67 NG and cell cycle phases and its effect on the prognosis of pulmonary typical carcinoid (PTC) tumors.

View Article and Find Full Text PDF

Ki-67 has shown promise as a prognostic factor in pulmonary carcinoids. In this study, we sought to validate the importance of Ki-67 and study the relationships between Ki-67 and other stromal biomarkers of vascular density. We examined Ki-67, CD34, and D2-40 in tumor tissues from 128 patients with surgically excised typical carcinoid of the lung.

View Article and Find Full Text PDF

Lung cancer (LC) is a leading cause of cancer-related mortality. Although smoking is the major risk factor, ~15% of all cases occur in never-smokers, suggesting that genetic factors play a role in LC predisposition. Indeed, germline mutations in the TP53 gene predispose to multiple cancer types, including LC.

View Article and Find Full Text PDF

Circadian rhythms comprise of daily oscillations in a variety of biological processes and are regulated by an endogenous clock. Disruption of these rhythms has been associated with cancer progression, and understanding natural oscillations in cellular growth control, tumor suppression and cancer treatment, may reveal how clock and clock‑controlled genes are regulated in normal physiological functioning. To investigate the association between clock genes and non‑small cell lung cancer (NSCLC), we genotyped three tag SNPs (rs938836, rs17050680, rs3805213) in the Nocturnin gene (CCRN4L), five SNPs (rs228727, rs228644, rs228729, rs707467, rs104620202) in the period 3 (PER3) gene and one SNP (rs6855837) in the CLOCK gene, in 78 Brazilian patients with NSCLC.

View Article and Find Full Text PDF

Lung cancer is the leading global cause of cancer-related mortality. Inter-individual variability in treatment response and prognosis has been associated with genetic polymorphisms in specific genes: EGFR, KRAS, BRAF, PTEN and TTF-1. Somatic mutations in EGFR and KRAS genes are reported at rates of 15-40% in non-small cell lung cancer (NSCLC) in ethnically diverse populations.

View Article and Find Full Text PDF