Pea ( L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown.
View Article and Find Full Text PDFVarious legume plants form root nodules in which symbiotic bacteria (rhizobia) fix atmospheric nitrogen after differentiation into a symbiotic form named bacteroids. In some legume species, bacteroid differentiation is promoted by defensin-like nodule-specific cysteine-rich (NCR) peptides. NCR peptides have best been studied in the model legume Gaertn.
View Article and Find Full Text PDFArbuscular mycorrhiza (AM) is known to be a mutually beneficial plant-fungal symbiosis; however, the effect of mycorrhization is heavily dependent on multiple biotic and abiotic factors. Therefore, for the proper employment of such plant-fungal symbiotic systems in agriculture, a detailed understanding of the molecular basis of the plant developmental response to mycorrhization is needed. The aim of this work was to uncover the physiological and metabolic alterations in pea ( L.
View Article and Find Full Text PDFLarge collections of pea symbiotic mutants were accumulated in the 1990s, but the causal genes for a large portion of the mutations are still not identified due to the complexity of the task. We applied a Mapping-by-Sequencing approach including Bulk Segregant Analysis and Massive Analysis of cDNA Ends (MACE-Seq) sequencing technology for genetic mapping the gene of pea which controls the formation of symbioses with both nodule bacteria and arbuscular-mycorrhizal fungi. For mapping we developed an -population from the cross between pea line N24 carrying the mutant allele of and the wild type NGB1238 (=JI0073) line.
View Article and Find Full Text PDFBackground: Samples pooling is a method widely used in studies to reduce costs and labour. DNA sample pooling combined with massive parallel sequencing is a powerful tool for discovering DNA variants (polymorphisms) in large analysing populations, which is the base of such research fields as Genome-Wide Association Studies, evolutionary and population studies, etc. Usage of overlapping pools where each sample is present in multiple pools can enhance the accuracy of polymorphism detection and allow identifying carriers of rare-variants.
View Article and Find Full Text PDF