We report here the finding of a new pharmacological activity of a well known antagonist of peroxisome proliferator-activated receptors (PPARs). PPARs belong to the family of nuclear receptors playing a relevant role in mammalian physiology and are currently believed to represent a major target for the development of innovative drugs for metabolic and inflammatory diseases. In the present study, the application of reporter animal technology was instrumental to obtain the global pharmacological profiling indispensable to unraveling 3-(1-(4-chlorobenzyl)-3-t-butylthio-5-isopropylindol-2-yl)-2,2-dimethylpropanoic acid (MK-886)-selective PPAR modulator (SPPARM) activity not underlined by previous traditional, cell-based studies.
View Article and Find Full Text PDFSince it is widely distributed into the body, beta(3)-adrenoceptor is becoming an attractive target for the treatment of several pathologies such as obesity, type 2 diabetes, metabolic syndrome, cachexia, overactive bladder, ulcero-inflammatory disorder of the gut, preterm labour, anxiety and depressive disorders, and heart failure. New compounds belonging to the class of arylethanolamines bearing one or two stereogenic centres were prepared in good yields as racemates and optically active forms. They were, then, evaluated for their intrinsic activity towards beta(3)-adrenoceptor and their affinity for beta(1)- and beta(2)-adrenergic receptors.
View Article and Find Full Text PDFThere is a growing interest in peroxisome proliferator-activated receptors (PPARs) as major players in the regulation of lipid and carbohydrate metabolism. Drugs targeting PPARs were in fact shown to have major relevance for the treatment of diseases associated with aging, such as arteriosclerosis and diabetes. However, a variety of toxic effects associated with PPAR ligand administration has been documented, including hepatocarcinogenesis, which may severely limit its therapeutic use.
View Article and Find Full Text PDFClofibrate is a lipid-profile modifying agent belonging to the fibrate class of drugs. Fibrates are known to exhibit their beneficial effects by activating peroxisome proliferator-activated receptor-alpha (PPARalpha) and used in the treatment of dyslipidemia and atherosclerosis and for the prevention of heart failure. Hereby, the preparation of two new sets of clofibrate analogues, ethyl 2-(4-chlorophenoxy)-3-oxoalkanoates and ethyl 2-(4-chlorophenoxy)-3-hydroxyalkanoates is described starting from commercially available 3-oxoalkanoates in fair to good yields.
View Article and Find Full Text PDF