Combined the phase field model with the wavelet dummy node-virtual crack closure technique (WDN-VCCT) used for stress intensity factors (SIFs) calculation. Calculated the node displacement using an improved brittle fracture phase field method, established the relationship between node displacement and node force using WDN-VCCT, and calculated the SIFs at the crack tip. The correctness and accuracy of the proposed method were verified through functional gradient material (FGM) tensile experiment.
View Article and Find Full Text PDFUlcerative colitis (UC) is a recurring inflammatory bowel disease, in which oxidative stress plays a role in its progression, and regulation of the oxidative/antioxidative balance has been suggested as a potential target for the treatment of UC. The aim of this study was to evaluate the protective effect of andrographolide against UC and its potential antioxidant properties by modulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Dextran sulfate sodium (DSS) -induced UC mice and the LPS-induced HT29 inflammatory cell model were established to uncover the potential mechanisms of andrographolide.
View Article and Find Full Text PDFExercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise.
View Article and Find Full Text PDFMaintaining healthy adipose tissue is crucial for metabolic health, requiring a deeper understanding of adipocyte development and response to high-calorie diets. This study highlights the importance of TET3 during white adipose tissue (WAT) development and expansion. Selective depletion of Tet3 in adipose precursor cells (APCs) reduces adipogenesis, protects against diet-induced adipose expansion, and enhances whole-body metabolism.
View Article and Find Full Text PDFAlcohol-related liver disease (ALD) is one of the most prevalent forms of liver disease in the world. Acetaldehyde, an intermediate product of alcohol catabolism, is a cause of liver injury caused by alcohol. This study was designed to evaluate the protective role and mechanism(s) of genistein against acetaldehyde-induced liver injury in the pathological process of ALD.
View Article and Find Full Text PDF