Fungal entomopathogens can greatly reduce the fitness of their hosts, and it is therefore expected that susceptible insects will be selected to avoid exposure to pathogens. Metarhizium brunneum is a fungal pathogen that can infect Agriotes obscurus, which in its larval form is a destructive agricultural pest and is repelled by the presence of M. brunneum conidia.
View Article and Find Full Text PDFAutodissemination techniques can potentially be used to distribute insecticides, including microbial insecticides, to cryptic pests. This approach is reliant on the target insect either passing the pathogen passively to other insects or the pathogen cycling within the population after the initial host dies. Here we examine, in small scale experiments, whether male Agriotes obscurus click beetles passively transmit the spores of the fungus Metarhizium brunneum directly, or indirectly via the environment, and whether this is influenced by exposure to synthetic female pheromone.
View Article and Find Full Text PDFElaterid female sex pheromone, while currently used for monitoring the adult life stage (click beetle), has only recently been explored as a potential management tool. Consequently, there is little understanding of how abiotic and biotic conditions influence the response of click beetles to the pheromone. We examined whether the response of male L.
View Article and Find Full Text PDFTrade-offs in the time and energy allocated to different functions, such as reproductive activities, can be driven by alterations in condition which reduce resources, often in response to extrinsic factors such as pathogens or parasites. When individuals are challenged by a pathogen, they may either reduce reproduction as a cost of increasing defence mechanisms or, alternatively, modify reproductive activities so as to increase fecundity thereby minimizing the fitness costs of earlier death, a behaviour consistent with the terminal investment hypothesis (TIH). The TIH predicts that individuals with decreased likelihood of future reproduction will maximize current reproductive effort, which may include shifts in reproductive timing.
View Article and Find Full Text PDFTwo populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca.
View Article and Find Full Text PDF