Publications by authors named "A F Henschen"

Large structural variants in the genome, such as inversions, may play an important role in producing population structure and local adaptation to the environment through suppression of recombination. However, relatively few studies have linked inversions to phenotypic traits that are sexually selected and may play a role in reproductive isolation. Here, we found that geographic differences in the sexually selected plumage of a warbler, the common yellowthroat (Geothlypis trichas), are largely due to differences in the Z (sex) chromosome (males are ZZ), which contains at least one putative inversion spanning 40% (31/77 Mb) of its length.

View Article and Find Full Text PDF

Pathogen adaptations during host-pathogen co-evolution can cause the host balance between immunity and immunopathology to rapidly shift. However, little is known in natural disease systems about the immunological pathways optimised through the trade-off between immunity and self-damage. The evolutionary interaction between the conjunctival bacterial infection (MG) and its avian host, the house finch (), can provide insights into such adaptations in immune regulation.

View Article and Find Full Text PDF

Animal hosts can adapt to emerging infectious disease through both disease resistance, which decreases pathogen numbers, and disease tolerance, which limits damage during infection without limiting pathogen replication. Both resistance and tolerance mechanisms can drive pathogen transmission dynamics. However, it is not well understood how quickly host tolerance evolves in response to novel pathogens or what physiological mechanisms underlie this defense.

View Article and Find Full Text PDF

Driven by co-evolution with pathogens, host immunity continuously adapts to optimize defence against pathogens within a given environment. Recent advances in genetics, genomics and transcriptomics have enabled a more detailed investigation into how immunogenetic variation shapes the diversity of immune responses seen across domestic and wild animal species. However, a deeper understanding of the diverse molecular mechanisms that shape immunity within and among species is still needed to gain insight into-and generate evolutionary hypotheses on-the ultimate drivers of immunological differences.

View Article and Find Full Text PDF

The first mitotic division of the initial cell is a key event in all multicellular organisms and is associated with the establishment of major developmental axes and cell fates. The brown alga Ectocarpus has a haploid-diploid life cycle that involves the development of two multicellular generations: the sporophyte and the gametophyte. Each generation deploys a distinct developmental programme autonomously from an initial cell, the first cell division of which sets up the future body pattern.

View Article and Find Full Text PDF