Publications by authors named "A F Dulhunty"

The recessive Ryanodine Receptor Type 1 (RyR1) P3527S mutation causes mild muscle weakness in patients and increased resting cytoplasmic [Ca] in transformed lymphoblastoid cells. In the present study, we explored the cellular/molecular effects of this mutation in a mouse model of the mutation (RyR1 P3528S). The results were obtained from 73 wild type (WT/WT), 82 heterozygous (WT/MUT) and 66 homozygous (MUT/MUT) mice with different numbers of observations in individual data sets depending on the experimental protocol.

View Article and Find Full Text PDF

The discovery of gating currents and asymmetric charge movement in the early 1970s represented a remarkable leap forward in our understanding of the biophysical basis of voltage-dependent events that underlie electrical signalling that is vital for nerve and muscle function. Gating currents and charge movement reflect a fundamental process in which charged amino acid residues in an ion channel protein move in response to a change in the membrane electrical field and therefore activate the specific voltage-dependent response of that protein. The detection of gating currents and asymmetric charge movement over the past 50 years has been pivotal in unraveling the multiple molecular and intra-molecular processes which lead to action potentials in excitable tissues and excitation-contraction (EC) coupling in skeletal muscle.

View Article and Find Full Text PDF

Cardiac ryanodine receptors (RyR2) release the Ca from intracellular stores that is essential for cardiac myocyte contraction. The ion channel opening is tightly regulated by intracellular factors, including the FK506 binding proteins, FKBP12 and FKBP12.6.

View Article and Find Full Text PDF

Skeletal and cardiac muscle excitation-contraction coupling commences with Na1.4/Na1.5-mediated, surface and transverse (T-) tubular, action potential generation.

View Article and Find Full Text PDF

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms.

View Article and Find Full Text PDF