Int Rev Neurobiol
November 2024
This chapter reviews the neuroanatomy of the nociceptive system and its functional organization. We describe three main compartments of the nervous system that underlie normal nociception and the resulting pain percept: Peripheral, Spinal Cord, and Brain. We focus on how ascending nociceptive processing streams traverse these anatomical compartments, culminating in the multidimensional experience of pain.
View Article and Find Full Text PDFAdvances in optical imaging and fluorescent biosensors enable study of the spatiotemporal and long-term neural dynamics in the brain of awake animals. However, methodological difficulties and fibrosis limit similar advances in the spinal cord. Here, to overcome these obstacles, we combined in vivo application of fluoropolymer membranes that inhibit fibrosis, a redesigned implantable spinal imaging chamber and improved motion correction methods that together permit imaging of the spinal cord in awake behaving mice, for months to over a year.
View Article and Find Full Text PDFWe report an electrochemical method for doping two-dimensional (2D) superatomic semiconductor ReSeCl that significantly improves the material's electrical transport while retaining the in-plane and stacking structures. The electrochemical reduction induces the complete dissociation of chloride anions from the surface of each superatomic nanosheet. After the material is dehalogenated, we observe the electrical conductivity () increases by two orders of magnitude while the 3D electron carrier density () increases by three orders of magnitude.
View Article and Find Full Text PDFWomen are more vulnerable to stress and have a higher likelihood of developing mood disorders. The serotonin (5HT) system has been highly implicated in stress response and mood regulation. However, sex-dependent mechanisms underlying serotonergic regulation of stress vulnerability remain poorly understood.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) infects up to 80% of the world's population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity.
View Article and Find Full Text PDF