Transport of membrane and cytosolic proteins into the primary cilium is essential for its role in cellular signaling. Using virtual three-dimensional superresolution light microscopy, the movements of membrane and soluble proteins from the cytoplasm to the primary cilium were mapped. In addition to the well-characterized intraflagellar transport (IFT) route, we found two new pathways within the lumen of the primary cilium: passive diffusion and vesicle-assisted transport routes that are adopted by proteins for cytoplasm-cilium transport in live cells.
View Article and Find Full Text PDFPeptide hormones control gut motility, but the intestinal stimuli and the gene networks coordinating this trait remain poorly defined. Here, we customized an assay to quantify female defecation rate as a proxy of intestinal motility. We found that bacterial infection with the human opportunistic bacterial pathogen (strain PA14) increases defecation rate in wild-type female flies, and we identified specific bacteria of the fly microbiota able to increase defecation rate.
View Article and Find Full Text PDFThe combination of lipopolysaccharide (LPS) and hypoxia-ischemia (HI) has been used to model the brain injury sustained by sick pre-term infants in order to study the pathological conditions of diffuse white matter injury, which is a major cause of preterm morbidity. Prior studies have shown that the timing and dose of LPS administration will determine whether the injury is reduced or exacerbated. Here we show that administering a single injection of LPS (0.
View Article and Find Full Text PDFBrain and spinal cord oligodendroglia have distinct functional characteristics, and cell-autonomous loss of individual genes can result in different regional phenotypes. However, a molecular basis for these distinctions is unknown. Using single-cell analysis of oligodendroglia during developmental myelination, we demonstrate that brain and spinal cord precursors are transcriptionally distinct, defined predominantly by cholesterol biosynthesis.
View Article and Find Full Text PDFThe development of peptide-based vaccines for treating human neurodegenerative diseases has been the eventual aim of many research endeavors, although no active immunotherapies have been approved for clinical use till now. A typical example of such endeavors is the effort to develop vaccines for Alzheimer's disease based on the beta-amyloid peptide, which continues to be intensively investigated despite previous setbacks. In this paper, recent developments in peptide-based vaccines which target beta-amyloid as well as tau protein and α-synuclein are presented.
View Article and Find Full Text PDF