The emergence of high-resistance strains to known antifungal drugs has highlighted the urgency of developing novel therapies for chronic dermatophytosis as a global health problem. An experimental dermatophytosis model in guinea pigs was developed to investigate the in vivo wound healing effects of cold atmospheric plasma (CAP) on T. rubrum skin invasion.
View Article and Find Full Text PDFIn the present study, metal and metal oxide nanoparticles were successfully synthesized using Aspergillus kambarensis. UV-Vis spectroscopy showed maximum absorbance of 417 nm for silver (AgNPs), 542 nm for gold (AuNPs), 582 nm for copper (CuNPs) and 367 nm for zinc oxide (ZnONPs) nanoparticles. Fourier transform infrared spectroscopy indicated the presence of various mycochemicals with diverse functional groups in the fungal cell-free filtrate.
View Article and Find Full Text PDFFungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in , and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform BL21 (DE3) strain.
View Article and Find Full Text PDFBackground: Resistance of Plasmodium falciparum against common anti-malarial drugs emphasizes the need of alternative and more effective drugs. Synthetic derivatives of 1-(heteroaryl)-2-((5-nitroheteroaryl)methylene) hydrazine have showed in vitro anti-plasmodial activities. The present study aimed to evaluate the molecular binding and anti-plasmodial activity of synthetic compounds in vivo.
View Article and Find Full Text PDF