Publications by authors named "A Eschenlohr"

The tailoring of spin-crossover films has made significant progress over the past decade, mostly motivated by the prospect in technological applications. In contrast to spin-crossover complexes in solution, the investigation of the ultrafast switching in spin-crossover films has remained scarce. Combining the progress in molecule synthesis and film growth with the opportunities at X-ray free-electron lasers, we study the photoinduced spin-state switching dynamics of a molecular film at room temperature.

View Article and Find Full Text PDF

Free-electron lasers provide bright, ultrashort, and monochromatic x-ray pulses, enabling novel spectroscopic measurements not only with femtosecond temporal resolution: The high fluence of their x-ray pulses can also easily enter the regime of the non-linear x-ray-matter interaction. Entering this regime necessitates a rigorous analysis and reliable prediction of the relevant non-linear processes for future experiment designs. Here, we show non-linear changes in the -edge absorption of metallic nickel thin films, measured with fluences up to 60 J/cm.

View Article and Find Full Text PDF

Femtosecond transient soft X-ray absorption spectroscopy (XAS) is a very promising technique that can be employed at X-ray free-electron lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here, a dedicated setup for soft X-rays available at the Spectroscopy and Coherent Scattering (SCS) instrument at the European X-ray Free-Electron Laser (European XFEL) is presented. It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity.

View Article and Find Full Text PDF

The excitation of magnetically ordered materials with ultrashort laser pulses results in magnetization dynamics on femto- to picosecond timescales. These non-equilibrium spin dynamics have emerged as a rapidly developing research field in recent years. Unraveling the fundamental microscopic processes in the interaction of ultrashort optical pulses with the charge, spin, orbital, and lattice degrees of freedom in magnetic materials shows the potential for controlling spin dynamics on their intrinsic timescales and thereby bring spintronics applications into the femtosecond range.

View Article and Find Full Text PDF

By combining interface-sensitive nonlinear magneto-optical experiments with femtosecond time resolution and ab initio time-dependent density functional theory, we show that optically excited spin dynamics at Co/Cu(001) interfaces proceeds via spin-dependent charge transfer and back transfer between Co and Cu. This ultrafast spin transfer competes with dissipation of spin angular momentum mediated by spin-orbit coupling already on sub 100 fs timescales. We thereby identify the fundamental microscopic processes during laser-induced spin transfer at a model interface for technologically relevant ferromagnetic heterostructures.

View Article and Find Full Text PDF