The concentration of solids in secondary sludge before anaerobic digestion in a wastewater treatment plant, bring about the production of a return flow, which contains high concentrations of all the common pollutant parameters. This return flow could unfavourably affect the performance of the processes and effluent quality of the waterline. Here, we report the utilisation of three similar microbial electrolysis cells reactors that performs simultaneous carbon and nitrogen removal to reduce the impact of the return flow in the plant.
View Article and Find Full Text PDFThis paper presents a path planner solution that makes it possible to autonomously explore underground mines with aerial robots (typically multicopters). In these environments the operations may be limited by many factors like the lack of external navigation signals, the narrow passages and the absence of radio communications. The designed path planner is defined as a simple and highly computationally efficient algorithm that, only relying on a laser imaging detection and ranging (LIDAR) sensor with Simultaneous localization and mapping (SLAM) capability, permits the exploration of a set of single-level mining tunnels.
View Article and Find Full Text PDFThe compound 2-mercaptobenzothizaole (MBT) has been frequently detected in wastewater and surface water and is a potential threat to both aquatic organisms and human health (its mutagenic potential has been demonstrated). This study investigated the degradation routes of MBT in the anode of a microbial electrolysis cell (MEC) and the involved microbial communities. The results indicated that graphene-modified anodes promoted the presence of more enriched, developed, and specific communities compared to bare anodes.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
June 2019
This study was aimed at understanding the effect of applied voltage, catholyte and reactor scale on nitrogen recovery from two different organic wastes (digestate and pig slurry) by means of microbial electrolysis cell (MEC) technology. For this purpose, MEC sizes of 100, 500 and 1000 mL were tested at applied voltages of 0.6, 1 and 1.
View Article and Find Full Text PDFThis study aims to characterize the performance of a 150 L bioelectrochemical system-based plant, during the simultaneous carbon and nitrogen removal from several waste streams of wastewater treatment plants. The bioelectrochemical system (BES) contained five electrode pairs (operated hydraulically and electrically in parallel) and was fed with either wastewater, centrate (nutrient-rich liquid stream produced during the dewatering of digested biomass), or a mixture of both over 63 days, with a hydraulic retention time of one day. Total organic carbon and total nitrogen removal rates averaged 80% and 70%, respectively, with a specific energy consumption of 0.
View Article and Find Full Text PDF