The human brain is an extremely complex network of structural and functional connections that operate at multiple spatial and temporal scales. Investigating the relationship between these multi-scale connections is critical to advancing our comprehension of brain function and disorders. However, accurately predicting structural connectivity from its functional counterpart remains a challenging pursuit.
View Article and Find Full Text PDFNonsense mutations generating premature termination codons (PTCs) in various genes are frequently associated with somatic cancer and hereditary human diseases since PTCs commonly generate truncated proteins with defective or altered function. Induced translational readthrough during protein biosynthesis facilitates the incorporation of an amino acid at the position of a PTC, allowing the synthesis of a complete protein. This may evade the pathological effect of the PTC mutation and provide new therapeutic opportunities.
View Article and Find Full Text PDFCharacterizing the effect of age and sex on macular retinal layer thicknesses and foveal pit morphology is crucial to differentiating between natural and disease-related changes. We applied advanced image analysis techniques to optical coherence tomography (OCT) to: 1) enhance the spatial description of age and sex effects, and 2) create a detailed open database of normative retinal layer thickness maps and foveal pit shapes. The maculae of 444 healthy subjects (age range 21-88) were imaged with OCT.
View Article and Find Full Text PDFHeart rate variability (HRV) abnormalities are potential early biomarkers in Parkinson's disease (PD) but their relationship with central autonomic network (CAN) activity is not fully understood. We analyzed the synchronization between HRV and brain activity in 31 PD patients and 21 age-matched healthy controls using blood-oxygen-level-dependent (BOLD) signals from resting-state functional brain MRI and HRV metrics from finger plethysmography recorded for 7.40 min.
View Article and Find Full Text PDFBackground: Retinal microvascular alterations have been previously described in Parkinson's disease (PD) patients using optical coherence tomography angiography (OCT-A). However, an extensive description of retinal vascular morphological features, their association with PD-related clinical variables and their potential use as diagnostic biomarkers has not been explored.
Methods: We performed a cross-sectional study including 49 PD patients (87 eyes) and 40 controls (73 eyes).