Publications by authors named "A Eremin"

An approach to detecting discontinuities in carbon fiber-reinforced polymers, caused by impact loading followed by compression testing, was developed. An X-ray sensor-based installation was used, while some algorithms were developed to improve the quality of the obtained low-contrast radiographic images with negligible signal-to-noise ratios. For epoxy/AF (#1) composite subjected to a "high-velocity" steel-ball impact with subsequent compression loading, it was not possible to detect discontinuities since the orientation of the extended zone of interlayer delamination was perpendicular to the irradiation axis.

View Article and Find Full Text PDF

We investigated the properties of p-type semiconducting columnar phases in self-assembled umbrella-shaped mesogens that have subphthalocyanine cores and oligo-thienyl arms. These compounds have nonswitchable phases that exhibit remanent electric polarization and nonlinear optical activity. Additionally, these compounds can generate photocurrents in the visible spectral range due to their wide absorption band.

View Article and Find Full Text PDF

We demonstrate an exceptional ability of a high-polarization 3D ferroelectric liquid to form freely suspended fluid fibers at room temperature. Unlike fluid threads in modulated smectics and columnar phases, where translational order is a prerequisite for forming liquid fibers, recently discovered ferroelectric nematic forms fibers with solely orientational molecular order. Additional stabilization mechanisms based on the polar nature of the mesophase are required for this.

View Article and Find Full Text PDF

Carbon fiber-reinforced composites are popular due to their high strength and light weight; thus, the structures demonstrate high performance and specific strength. However, these composites are susceptible to impact damage. The objective of this research was to study the behavior of carbon fiber-reinforced laminates based on a polyetheretherketone (PEEK) matrix with six stacking sequences under static and impact loading.

View Article and Find Full Text PDF

Optimization of the structure of piezoelectric transducers such as the proper design of matching layers can increase maximum wave energy transmission to the host structure and transducer sensitivity. A novel configuration of an ultrasonic transducer, where elastic metamaterial insertion is introduced to provide bulk wave mode conversion and to increase wave energy transfer into a substrate, is proposed. Configurations of layered elastic metamaterials with crack-like voids are examined theoretically since they can provide wide band gaps and strong wave localization and trapping.

View Article and Find Full Text PDF